Как турбина влияет на мощность автомобиля, преимущества турбоагрегата

На сколько процентов повышает мощность турбина двигателя

Откуда возникает увеличение мощности турбины? Какова формула мощности любого двигателя, и как турбина в влияет на эту формулу? (Не пугайтесь до смерти при упоминании формул: те из них, о которых ниже идёт речь, являются простыми и легкими для понимания.) Чтобы ответить на эти вопросы, надо изучить линейное уравнение с одним неизвестным, которое связывает мощность с параметрами, описывающими двигатель внутреннего сгорания.

Мощность = P*L*A*N

Р — среднее полное давление в цилиндре. Проще представить себе Р как среднее давление, воздействующее на поршень.

L-длина хода. Она сообщает, как далеко будет двигаться поршень под действием этого давления.

А — площадь сечения цилиндра. Вот она, та самая площадь, к которой приложено давление.

N — число рабочих тактов двигателя за одну минуту. Это число показывает, сколько цилиндров у двигателя и каковы его обороты.

N = число цилиндров * частота вращения двигателя/2 ( Для четырехтактного двигателя, частота вращения разделена на 2 потому что каждый цилиндр совершает рабочий такт один раз за два оборота)

Здесь наблюдается несколько интересных зависимостей! Например, возьмите Р и умножьте на А, и Вы имеете произведение давления на площадь, которое является средней силой, действующей на поршень. Теперь умножьте Р*А(сила) на длину хода L (расстояние), и Вы имеете число, которое представляет собой момент, теперь берите это число и умножайте на N (с какой скоростью совершается работа), вот Вы и получите мощность (то, что и заказывали). Пожалуйста, заметьте, что это означает: мощность = момент * обороты в минуту.

Так как общая цель нашего упражнения — получение большей мощности, давайте изучим то, над чем позволяет нам поработать «P*L*A*N». Сначала давайте посмотрим на то, что может дать работа с N. Имеются два способа получить большее количество рабочих тактов в минуту: увеличить количество цилиндров или раскрутить двигатель до больших оборотов. Это дает некоторое поле для приложения усилий: старания целой области человеческой деятельности, известной как проектирование двигателей, направлены исключительно на достижение более высоких оборотов в минуту с определенным запасом прочности.

Помните, что ненавистные инерционные нагрузки растут в квадратичной зависимости от увеличения оборотов двигателя. Это означает, что при 7200 оборотах в минуту, инерционная нагрузка будет доставлять 144 % от нагрузки, возникающей при 6000 оборотах в минуту. Двигатель подвергается усиленному износу и разрушению. В конечном счете, увеличение отдаваемой мощности путем увеличения N не являйся ни дешевым, ни приятным и не способствует достижению большого ресурса. Так как мы, по вышеизложенным практическим причинам, не ищем значительно увеличивать мощность, увеличивая N, единственный оставшийся выбор — увеличить момент, делая что-то с P*L*A. Мы должны вернуться и посмотреть на P*L*A немного внимательней.

Попробуем изменить А, то есть площадь сечения цилиндра. Насколько это поможет? Измените диаметр цилиндра на 3 мм, и, возможно, вы получите прибавку мощности в 10 %. Не стоит заморачиваться. Мы можем также изменить L, ход поршня. Может быть, получим гдето 10 %. Очевидно, что если нашей целью является существенное увеличение мощности, то А и L не дадут нам многого.

Изменение Р становится нашей единственной надеждой. Как успешно изменять Р — это сложный вопрос. Р может быть изменено в 1.2,1.5,2,3,4, 5 раз… реальный потенциал не известен, так как инженеры постоянно нащупывают новый предел. Гоночные автомобиль Гран-при сезона 1987 довели развитие турбонагнетателя до высочайшего уровня, когда-либо достигнутого, доведя отдаваемые мощности почти до 1 л.с. с кубического сантиметра. Этого достаточно,чтобы сказать, что удвоение мощности нашего с вами обычного двигателя — это не детские фантазии, это наши оправданные ожидания

Здесь особенно важно заметить то, что мы значительно увеличиваем мощность без увеличения оборотов двигателя. Потому что момент РLA) — это то, что мы действительно изменяем

Турбина увеличивает момент, а момент это здорово!

Как снять турбину?

Чтобы поменять турбину своими руками, предварительно ее надо демонтировать. Процедуру снятия можно выполнить в гаражных условиях.

Что понадобится?

Перед тем, как снять турбину, для выполнения задачи подготовьте:

  • набор отверток — с крестовым и плоским наконечником, желательно разной длины;
  • набор гаечных ключей;
  • ключи трещотка на 1/2 и 1/4, желательно с удлинителями;
  • жидкость WD-40.

Алгоритм действий

Если автомобилю больше пяти лет, за день до процедуры демонтажа все крепежные гайки и болты рекомендуется обработать средством WD-40.

Речь идет об элементах крепления турбины к коллектору. Это позволит облегчить процедуру демонтажа.

Процесс снятия выполняется так:

  1. Отключается электросеть машины. Для этого в моторной отсеке от АКБ отсоединяются клеммы.
  2. Для выполнения работ надо обеспечить свободный доступ к агрегату. Турбина располагается между двумя коллекторами — выпускным и впускным. Если машина заднеприводная, то агрегат установлен справа от мотора. Если автомобиль оборудован передним приводом, то искать турбину надо слева от силового агрегата.
  3. Производится демонтаж всех компонентов и узлов, которые могут мешать снятию турбины. Здесь надо ориентироваться на конструктивные особенности ДВС. Демонтажу могут мешать генераторное устройство, батарея либо резервуар системы обмыва лобового стекла. Производится снятие креплений и демонтаж этих элементов.
  4. Турбины современных автомобилей оборудуются множеством контроллеров. Речь идет о датчике контроля температура газов, контроллере давления, исправности агрегата и т. д. Перед демонтажем агрегата надо произвести отключение этих устройств от бортовой сети, сняв разъемы. Если этого не сделать, можно повредить проводку.
  5. Выполняется отсоединение патрубков охладительной системы, а также магистралей системы смазки картриджа турбины. При отключении рекомендуется промаркировать шланги, чтобы не перепутать их при дальнейшем монтаже. Надо произвести демонтаж или отключить магистраль слива моторной жидкости из полости картриджа в картер силового агрегата.
  6. Следующим этапом будет демонтаж турбокомпрессорного агрегата. Он может фиксироваться на аппайпе, даунпайпе либо блоке силового агрегата. Сначала выполняется демонтаж участка магистрали, которая идет на выхлопную трубу. При выполнении задачи нельзя потерять уплотнительные элементы и гайки.
  7. Затем выполняется отсоединение верхней магистрали, она демонтируется немного проще. По этому шлангу сжатый воздушный поток подается на силовой агрегат, поэтому температуры в этой магистрали ниже. В результате состояние болтовых соединений лучше.
  8. Если турбина фиксируется на блоке, то надо открутить и это крепление. После этого агрегат отсоединяется от коллекторного узла и демонтируется.

Канал Ремонт своими руками Audi Q7, A6, VW рассказал о демонтаже турбины на примере автомобилей Ауди и Фольксваген.

Принцип работы турбинного двигателя на автомобиле

В зависимости от устройства и принципа действия ДВС бывают:

  • атмосферными;
  • турбированными.

Разница между ними заключается в том, что в систему турбонаддува входит компрессор, интеркулер, регулятор давления наддува и пр. Основным элементом является турбокомпрессор, который отвечает за повышение давления в системе впуска воздуха. Интеркулер необходим для охлаждения воздуха и увеличения его плотности.

Система находится под управлением регулятора наддува – перепускного клапана, который контролирует давление газов. Ограничивая их количество, клапан создает оптимальное давление в системе.

Турбокомпрессор функционирует следующим образом:

  • Пройдя сквозь воздушный фильтр, воздух достигает входного отверстия.
  • Воздух сжимается, процент содержания в нем кислорода повышается; за счет нагрева воздуха уменьшается его плотность.
  • Воздушная масса выходит из турбинного компрессора, попадает в интеркулер, где охлаждается.
  • Через дроссель и впускной коллектор сжатый воздух попадает в цилиндры двигателя.
  • Часть образовавшихся при работе двигателя выхлопных газов подается турбиной обратно в коллектор турбины; за счет этого воздушного потока приводится в движение вал, на одном из концов которого находится компрессор.
  • После этого воздух начинает повторно сжиматься.

Бензиновые и дизельные турбинные двигатели на автомобилях практически идентичны, разница заключается только в уровне наддува. Для дизельных ДВС необходимо большее давление, в связи с этим они комплектуются более мощными нагнетателями воздуха. Бензиновым двигателям достаточно нагнетателей меньшей мощности, поскольку излишнее давление в камере сгорания может привести к детонации.

  1. Бензиновый турбинный двигатель на автомобиле представляет собой ДВС с искусственно увеличенным благодаря турбине уровнем сжатия воздуха в камерах. За счет повышения этого параметра увеличивается мощность мотора и ряд других характеристик.

    Создав самый первый силовой агрегат, инженеры начали попытки увеличения его мощности без значительного изменения объема мотора. Казалось бы, решить эту задачу очень просто, позволив ДВС более эффективно «дышать». Дополнительный объем воздуха, поступающий в цилиндры принудительно, под давлением, способен улучшить параметры сгорания топливовоздушной смеси.

    За счет большего объема воздуха топливо может прогорать полностью, тем самым повышая мощность. Однако внедрение новых технологий происходило медленно. Изначально турбокомпрессоры устанавливались только на большие двигатели кораблей и авиации.

  2. Турбодизельные агрегаты имеют практически аналогичное строение. Разница между бензиновым и дизельным турбинным двигателем на автомобиле заключается в наличии интеркулера – узла, охлаждающего воздух перед его поступлением в цилиндры. Так как холодный воздух имеет меньший объем по сравнению с теплым, он может поступить в цилиндры в большем количестве.

Как устанавливается турбина

Вы и сами можете переделать мотор, если умеете выполнять следующие операции:

  • увеличение объемов цилиндров;
  • замена клапана и кулачкового вала;
  • снижение сопротивления ГРС;
  • установка улучшенных воздухофильтров;
  • использование патрубков и увеличение насосной мощности.

В результате мощность силового агрегата увеличится минимум на 30%. Однако вряд ли вы сумеете провести чип-тюнинг, то есть прошивку мотора при помощи специальных компьютерных программ. Это позволяет повысить мощность устройства приблизительно на 15%. Стоит отметить, что стоит это довольно дорого. У экспертов нет однозначного мнения по поводу степени полезности этой процедуры. Одни из них утверждают, что после нее двигатель изнашивается быстрее, а другие убеждены, что перепрошивка наоборот расширяет эксплуатационный ресурс деталей.

После операций по повышению мощности ДВС можно столкнуться с тем, что агрегат начал перегреваться, особенно при жаркой погоде. Чтобы избежать этого, нужно будет установить интеркулер. Это устройство охлаждает надувочный воздух. Стоит отметить, что его можно установить и обычный атмосферный двигатель. Интеркулер сделает так, что в поступающем холодном воздухе будет содержаться больше кислорода. Это обеспечит лучшее сгорание топлива, за счет чего возрастет и КПД двигателя. Поскольку данное устройство является достаточно компактным, его можно устанавливать практически куда угодно.

Большинство автовладельцев отмечает приятные изменения в первые же минуты вождения машины, в которую был вмонтирован интеркулер. Температура воздуха снижается на 15%, что увеличивает мощность ДВС в среднем на 4%. При этом сокращается расход топлива. В отдельных случаях при помощи данного механизма мощность мотора можно повысить даже на 25%.

Может ли быть установлена турбина на атмосферный двигатель вашей машины? Это определяется моделью авто. Иногда проще купить новый автомобиль, чем подбирать необходимые запасные части для старого. Если вы все-таки хотите турбировать мотор, то лучше не пытайтесь делать это самостоятельно, а обратитесь за помощью к профессионалу.

Переоборудование начинается с демонтажа всех деталей, связанных с впуском и выпуском воздуха. Затем коллектор соединяют с турбиной, развернутой таким образом, чтобы работа с присоединением патрубков выполнялась максимально легко.

Турбина вращается очень быстро, поэтому ее подшипники должны постоянно смазываться. Трубку для подачи смазки необходимо подсоединить к тому месту в моторе, в котором масло идет под давлением. Для подключения также может использоваться тройник датчика давления. Второй конец трубки подключают к верхнему сегменту картриджа турбины. Сливаться масло будет под низким давлением, через предназначенный для этого сосок. Система охлаждения подключается с обратной стороны от водяной помпы.

Двигатель будет получать больше воздуха, а значит, ему понадобится большее количество топлива. Для увеличения его подачи устанавливаются форсунки, обладающие высокой производительностью. Также в некоторых случаях имеет смысл установить новый топливный насос. Электроника будет контролировать уровень давления воздуха, не допуская избыточных показателей. К ней подсоединяют датчики температуры. Контроллер нужно откалибровать так, чтобы топливная смесь впрыскивалась точно в нужный момент.

Не забывайте, что прошивкой двигателя обязательно должен заниматься очень опытный специалист. Здесь есть риск сбить заводские настройки, что выведет мотор из строя. Тогда придется тратить дополнительные средства на его ремонт. Установка турбокомпрессора на атмосферный двигатель в значительной степени упрощает его настройку. Тогда двигатель сможет эффективно работать и на высоких, и на низких оборотах.

источник

Задержка.

Обсуждение турбин редко обходится без упоминания о задержке (лаге турбины). На самом деле участники обсуждения редко говорят действительно о задержке. Обычно они говорят о пороге наддува. Пожалуйста, прочтите определения задержки (лага), порога наддува, и приемистости в глоссарии. Применительно к турбонагнетателю задержка по существу означает, как долго Вы должны ждать давления наддува после того, как открыли дроссельную заслонку. Стало быть, это явление не полезное по определению. Но задержка не имеет никакого отношения к приемистости. Приемистость в данном случае имеет одинаковый смысл как для турбодвигателя, так и для атмосферного. Ситуация сводится к следующему — либо имеется некоторая задержка и огромное увеличение момента или напротив — отсутствие задержки и отсутствие увеличения момента. Если Вы не имеете никакой задержки, Вы не имеете никакого наддува. Поэтому Вы не можете ожидать никакого значительного увеличения момента. Задержка уменьшается с увеличением частоты оборотов двигателя. В то время как задержка может иметь длительность в секунду или более при низких оборотах двигателя, при увеличении наддува, на оборотах приблизительно 4000 или больше задержка фактически исчезает. Например, в должным образом сконструированной системе наддува, давление наддува будет всегда следовать за положением вашей педали при оборотах более чем 4000 оборотов в минуту. Реакция здесь фактически мгновенна.

Форма кривой момента двигателя с турбонаддувом достаточно сильно отличается от таковой у атмосферного двигателя. На двигателях с турбонаддувом максимум момента фактически всегда находится на более низких оборотах. Сопоставьте характеристики всех известных двигателей и придёте именно к такому выводу. Чем больше форсирован атмосферный двигатель, тем больше его отличие от двигателя с турбонаддувом. Как результат для водителя это означает, что он или она не должен сильно раскручивать мотор с турбонаддувом, чтобы двигаться быстрей. Это логическое заключение идёт совершенно вразрез с популярным мнением, но факт налицо.

Сопоставление величин задержки малой, средней, и большой турбин.

Горячий и холодный запуск часто представляют как проблемы высокофорсированных двигателей. До некоторой степени это справедливо системах турбонаддува с карбюраторами, но такие системы немногочисленны. Системы впрыска топлива зависят исключительно от разумных показаний температурных датчиков для холодного и горячего запуска и являются полностью автоматическими. Запуск из холодного стояния — проблема для двигателей с более низкими степенями сжатия. Если двигатель имеет проблемы в этом отношении без турбонагнетателя, он будет, вероятно, иметь те же самые проблемы с турбонагнетателем, так как нагнетатель не влияет ни на эти температуры ни на электронику. В любом случае, эта трудность не связана с турбонаддувом.

Чем различаются турбомотор и простой атмосферник? 2 плюса турбонаддува

Смотрю я, что многие автомобили нынче идут с турбированными моторами, причем это не только турбодизели, но и бензиновые агрегаты. Видимо, есть у таких моторов какой-то плюс, раз их ставят под капоты транспортных средств. Или плюсов не один, а много? Давайте разберемся, но сперва поймем, а чем же турбированный двигатель отличается от атмосферного, вдруг уважаемый читатель еще не совсем понимает суть дела.

Атмосферный двигатель засасывает воздух в свои цилиндры под воздействием разрежения. Оно появляется, когда поршень идет в направлении нижней мертвой точки. Чаще всего внутри цилиндра на момент конца спуска давление меньше, чем в атмосфере. Помним, что ветер дует в зону низкого давления из зоны давления высокого – вот воздух у нас и пошел в цилиндры, повинуясь этому нехитрому закону. Вот с этой порцией воздуха и реализуется рабочий цикл двигателя внутреннего сгорания.

В цилиндры надувного мотора идет воздух, который предварительно сжат компрессором до нужного давления. Так что воздуха в такой агрегат попадет существенно больше, нежели в простой атмосферник. Это уже не свободное, а нагнетаемое всасывание получается. Чем больше воздуха, тем больше и кислорода, а чем больше кислорода за единицу времени войдет в мотор, тем больше топлива может быть сожжено за эту самую единицу времени.

В итоге турбированный мотор при том же объеме мощнее атмосферного или компактнее пари большей мощности.

Вот только воздух внутри компрессора нагревается, а его надо охладить. Не беда – эта задача возлагается на интеркулер, присутствующий в конструкции. Компрессоры существуют разные – одни работают от коленвала, другие являются волновыми обменниками давления, но все же двигатель с турбонаддувом плюсы имеет явные по сравнению с перечисленными конструкциями. Говоря о том, что такое турбонаддув, буду краток: тут задействована энергия выхлопных газов.

Газы вращают центростремительную турбину, а на одном с ней валу вращается колесо центробежного компрессора – оно и сжимает воздух перед отправкой в нутро цилиндров. Естественно, наддувный мотор конструктивно сложнее атмосферного, а потому. давайте по порядку.

Пройдемся по положительным качествам двигателя с турбонаддувом:

1. Крутящий момент просто превосходный! Разгон ведь при любой трансмиссии зависит от того, насколько быстро силовой агрегат раскрутится с холостого хода до оборотов, на которых развивается максимальная мощность. Мощность, как знаем, является пропорциональной произведению оборотов коленвала на показатель крутящего момента. Вот почему нужно как можно больше крутящего момента на низких оборотах.

Проектируют надувные моторы так, чтобы компрессор «очень рано» давал весьма большое давление наддува, пока коленвал еще вращается на небольших оборотах. В итоге обороты небольшие, а крутящий момент уже приличный. Делать момент еще больше чревато существенными повреждениями мотора из-за нагрузок на детали.

Чтобы такого не произошло, начинает работать перепускной клапан, уводящий часть выхлопных газов мимо турбины. Так ограничивается производительность турбокомпрессора, и кривая линия крутящего момента переходит в горизонтальную полку.Вот за что любят турбомоторы особо активные водители.

2. Малый расход горючего – в атмосферном двигателя энергия выхлопных газов не используется, они уходят в трубу. В надувном моторе и температура, и давление газов рационально используются. Эта энергия благодаря работе турбины не улетает зря, а используется для движения. Но это верно для спокойной манеры движения.

Но есть еще и минусы мотора с турбиной. О них мы расскажем чуть позже, а вы пока подписывайтесь на канал, проставляйте лайки, а также печатайте комментарии по рассмотренной теме. С уважением и до новых текстов!

Источник

Как я могу определить отказ турбины?

Об этом мы писали подробную обзорную статью: Неисправности турбин: эксплуатация, неисправности, восстановление и ремонт

Признаки неисправностей турбокомпрессора
Симптом: Проявления: Что необходимо сделать:
Свист турбонагнетателя

При увеличении скорости слышен свист турбины. Возможно, поврежден вал турбины. Свист вызван из-за металлического трения.

Замена турбокомпрессора / Ремонт
Синий дым

Утечка масла в турбокомпрессоре. Возможно на валу есть сколы (износ). Масло попадает в выхлопную систему. 

Замена турбокомпрессора / Ремонт
Увеличился расход топлива Повреждение подшипников турбокомпрессора. Линия подачи масла в турбину неисправна или забита. Проверьте маслопроводы турбокомпрессора и при необходимости замените их
Черный дым

Возможно, турбине не хватает воздуха для подачи в двигатель. В результате в камере сгорания неправильная смесь топлива и кислорода. В итоге в процессе сгорания топлива образовывается черный дым. Скорее всего, в автомобиле есть утечка, поступаемого в двигатель, воздуха. 

Проверьте шланги и соединение системы всасывания воздуха. Также проверьте линию подачи сжатого воздуха на герметичность и при необходимости замените поврежденный компонент. 
Потеря мощности I Недостаток постоянной мощности. Компрессор может быть поврежден. Например, из-за сломанных лопастей колес, турбина больше не может подавать достаточное количество воздуха в цилиндры. Необходимы новые колеса компрессора колеса. Также необходимо защитить систему подачи воздуха в турбину от попадания инородных вещей. 
Потери мощности II Блок VTG загрязнен. В итоге работа лопаток турбины с изменяемой геометрией не эффективна. Например, из-за загрязнения лопаток может не хватать давления выхлопных газов.  Разобрать турбину и очистить лопатки, от образования сажи.
Чрезмерное давление наддува Неисправен клапан регулирования давления наддува. Неисправность вакуумного блока регулировки работы клапана. Замена вакуумного блока, очистка или замена клапана выхлопных газов
Шум от турбокомпрессора Обратное давление в выхлопной системе слишком высокое. Повреждение колеса компрессора или колеса турбины. Утечка выхлопных газов.  Проверьте выхлопную систему на наличие повреждений. Проверьте компрессор турбины на повреждения. Устраните неисправность с помощью ремонта турбокомпрессора.

Просто езда.

Турбина находится на заднем плане на всех режимах работы кроме тех, на которых необходимо иметь давление наддува, чтобы достичь особенной скорости. Предположим, что данное транспортное средство может достичь максимальной скорости, скажем, в 200 км/ч без турбонагнетателя. Теперь установим турбину. Разумно говорить, что транспортное средство достигнет приблизительно 200 км/ч без потребности в дополнительной мощности; следовательно, для этого не требуется никакого давления наддува. Для всех практических целей, даже для самых диких и невообразимых скоростей, вряд ли потребуется любое давление наддува, чтобы поддерживать такую скорость. Мысль, что супер мощный, с максимальной отдачей турбо автомобиль великолепно приспособлен для движения на полной скорости, но похож на неприрученного злобного зверя на низких скоростях, не является столь уж неблагоразумной. Но слишком в неё углубляться мы не станем. Чтобы создать эффективный автомобиль с приличным турбонагнетателем, Вам необходимо только проделать на более продвинутом уровне всё то же, что требуется для создания турбо автомобиля вообще: отвести большее количество теплоты, увеличить подачу топлива, увеличить октановое число и убедиться, что конструкция двигателя отвечает предъявляемым требованиям. Факторы, которые являются основой хорошего поведения на низких оборотах — консервативные профили распредвалов, малые впускные каналы, и калибровка топливной системы, неизменны и для более высоких давлений наддува. Совершенно неразумно говорить, что 500-сильный уличный турбо автомобиль, который при полном открытии дросселя на второй передаче может оставить на асфальте следы от колес, имеет проблемы с эластичностью.

Источник

Эластичность двигателя

Каковы ограничения накладываемые турбодвигателем на эластичность? Хорошая эластичность и отзывчивость на действия водителя для большинства сегодняшних автомобилей являются обязательными условиями. «Сел, завёл, поехал». Если не так, то современный потребитель — недоволен. Принято считать, что высокая мощность и хорошая эластичность не совместимы в одном автомобиле. Данное мнение является вполне справедливым для атмосферных двигателей, но совершенно не годится по отношении двигателей с турбонаддувом. Рассмотрим факторы, определяющие эластичность: консервативные профили распредвала, малые впускные каналы, гибкость и калибровки топливной системы.

Правильный двигатель с турбонаддувом имеет профиль распредвала с малым перекрытием, обычно называемый «экономичным распредвалом». Размеры каналов обычно малы, чтобы обеспечить хорошее наполнение цилиндров на низких оборотах и позволяющие компрессору затрамбовывать воздух в них, когда требуется высокое давление. Калибровка топливной системы должна быть точной, по крайней мере для случая электронно-управляемого впрыска топлива. Очевидно, что факторы, формирующие хорошую эластичность, присутствуют в автомобилях с турбомоторами. То, что турбонаддув позволяет подать большее количество воздуха в цилиндры, когда это необходимо, нисколько не влияет на «сел, завёл и поехал.» Однако имеются два фактора, влияющие на эластичность, которые начинают играть роль при использовании турбонаддува: порог наддува и задержка (лаг). Они, впрочем, не столь уж значительно ухудшают характеристики атмосферных двигателей, так как распредвал, степень сжатия, установка угла опережения зажигания, и топливная смесь остаются фактически теми же самыми.

Типичный пример разницы в кривых момента для турбомотора и атмосферного двигателя.

Основные виды турбин

В выборе турбины придется рассматривать 2 варианта: ТКР и Garrett.

В государствах СНГ, в нашей стране есть заводы, выпускающие турбокомпрессоры. Они маркируют аббревиатурой ТКР. В модельном ряду представлены агрегаты с различной производительностью, габаритами. КПД этих устройств варьируется в диапазоне 43-77%. Все выпускаемые ТКР предназначаются для моторов, работающих на дизельном топливе. Работу устройства обеспечивают подшипники скольжения. Крупнейшим российским производителем турбин ТКР является НПО «Турботехника».

Известно, что у бензина температура горения выше, что вызывает сомнения в возможности установки такого турбокомпрессора на авто с этим топливом. Многие считают, что в таких условиях лопасти турбины могут сгореть. Однако на практике таких случаев не было. Основной объем температурных воздействий приходится на выпускной коллектор, клапана, поршни, блок цилиндров. Поэтому можно монтировать ТКР на бензиновый двигатель.

Garrett

Серийные дизельные, бензиновые иномарки оснащаются турбинами Garrett. У концерна 14 филиалов, расположенных на разных континентах. Производитель выпускает не только модели с подшипниками скольжения, но и шарикоподшипниковые варианты, имеющие повышенную устойчивость к трению, высоким оборотам, недостатку масла. Эти модели в маркировке имеют букву «R». Двигатель с турбонаддувом Garrett можно увидеть в автомобилях:

К историческим моделям с устройствами этого производителя относятся: Oldsmobile Jetfire Rocket, Saab 99, Mercedes 300SD, Indianapolis 500.

Основные факторы влияния турбины на расход топлива

Сложно найти водителя, который бы не мечтал о мощном двигателе. Рев мотора и свист колес – это действительно привлекает любого автомобилиста, независимо от пола или возраста. Но опытные водители настороженно относятся к повышаемой мощности, поскольку у нее не всегда наблюдаются только положительные последствия.

Благодаря турбинным установкам, современные двигатели можно сделать сильнее и мощнее. Они будут быстрее разгоняться, на машине доступно перевозить внушительные грузы, использовать ее, как тягач и т.д. Но существует ряд других вопросов, которые вызывают подозрения в необходимости такого технического элемента на авто. Следует разобраться в них подробнее.

Влияет ли турбонаддув, на мощность двигателя и экономию топлива?

Многие автопроизводители утверждают, что у турбокомпрессоров – и, высокие показатели экономии топлива, и быстрое ускорение, то есть лучшее из обоих миров.

Естественно, автомобили с турбонаддувом позволяют автопроизводителям поддерживать высокую мощность, в то время как они сокращают объёмы двигателей, для лучшей экономии топлива. Но большая часть экономии топлива теряется, когда «гонщики» топают педалью газа и наслаждаются высокой производительностью турбонаддува.

Возьмем к примеру, технологию EcoBoost от Ford, и взглянем на их рекламу, которая показывает, что компания продвигает экономичные двигателеи с турбонаддувом EcoBoost.

Само название EcoBoost подразумевает, что турбированный двигатель, сочетает в себе высокую экономию топлива (Eco) с производительностью (Boost).

Но, несмотря на маркетинговые ходы, показывающие высокую топливную экономичность турбоагрегатов, цифры в реальном мире, зачастую не оправдываются.

Когда люди думают о турбо, они думают о производительности, но чем быстрее вы ездите, тем хуже экономия топлива.

Чтобы узнать, соответствуют ли транспортные средства требованиям экономии топлива, было произведено тестирование автомобилей с турбонаддувом, от разных производителей, где комбинированная езда по городским автомагистралям, у всех транспортных средств оказалась более затратной, чем заявленные производителями, цифры расхода топлива.

Кроме того, покупатели обычно платят на много больше, за двигатель с турбонаддувом. Таким образом, покупатели не только платят больше, но и получат более низкую топливную экономичность, чем при использовании обычного двигателя.

Кроме того, в некоторых случаях обычные не турбированые двигатели, имеют более высокую экономию топлива, чем двигатели с турбонаддувом.

Honda отказалась от 2,4-литрового четырехцилиндрового турбированного двигателя Acura RDX в 2013 году, и заменила его более крупным двигателем без турбонаддува, который улучшил топливные показатели. Турбомотор Acura RDX, расходовавший в 12,4 литра на 100 километров по городу и 9,8 литров по трассе, был заменен не турбированным 3,5-литровым V6, который стал «кушать» по городу 11,7 литров и 8,4 литра по трассе.

Также, тестировались два Ford F-150 в буксировочном тесте, один с турбодвигателем V6 EcoBoost, а другой с обычным 5-литровым V8. И выиграл более крупный двигатель V8 – 25 литров, по сравнению с 32,5 литрами на 100 км, с V6 EcoBoost.

Малый двигатель, тяжелое транспортное средство

Итак, почему автомобили с турбонаддувом часто не соответствуют их заявленным характеристикам?

Турбокомпрессор, установленный вблизи выпускного коллектора или в нём самом, питается отработавшими газами, которые вращают небольшую турбину на очень высоких скоростях (то есть, чем больше обороты двигателя, тем больше выхлопных газов и быстрее вращается турбина). В свою очередь, турбина вращает воздушный нагнетатель, который сжимает и подаёт, более плотную смесь топлива и воздуха в цилиндры двигателя, позволяя двигателю с меньшим объёмом, выдавать больше энергии.

Но когда турбокомпрессор работает, экономия топлива снижается, и иногда резко.

Кроме того, некоторые автопроизводители говоря об экономичности, используют преимущества тестовых процедур, а автомобили калибруются отметками расхода топлива, на основе испытаний, которые могут не соответствовать реальным условиям вождения.

Например тест экономии топлива на шоссе, проходит около 12 минут, имеет максимальную скорость 100 км/ч и среднюю скорость 75 км/ч. Поэтому тестирование на таких низких скоростях, приводит к высоким показателям экономичности, у двигателей с турбонаддувом.

В итоге, вы попадаете в игру, с единственными показателями, которые важны для автомобильных компаний, потому что, если вы не получите хорошие цифры, вы не продаете автомобили.

Кроме того, небольшие двигатели в больших автомобилях, такие как 2.0-литровый двигатель с четырьмя цилиндрами в Ford Explorer, не имеют резкого ускорения, которого ожидают водители. Поэтому водители стараются чаще давить на газ, управляя турбонаддувом, что подрывает топливную экономичность.

Суммируя внутренние «разногласия» турбокомпрессоров, можно подвести итог :

Турбокомпрессоры замечательное изобретение, так как, водитель получает экономичный или мощный двигатель, в тот промежуток времени, когда это ему будет нужно.

Также, вас могут заинтересовать статьи, по теме:

Уважаемые гости — переходите на мой канал, кликнув — Pit Stop , ставьте лайки и не забывайте подписываться (это Вас ни к чему не обяжет, а Вы будете чаще встречать мои статьи в ленте Дзен), впереди ещё много нового и интересного!

Источник

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
FAQ по авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: