Датчики двигателя внутреннего сгорания

Вот как работает отсечка оборотов, и почему она важна даже для профессионалов

Двигателю нужен ограничитель оборотов, чтобы предотвратить повреждение компонентов мотора от превышения скорости вращения его механизмов. Но каковы различные способы, которые применяются для реализации работы так называемой «отсечки», и что может произойти, если на вашем автомобиле ее нет?

Итак, «отсечка», он же ограничитель максимальных оборотов. В соответствии с названием ясно и его предназначение – система ограничивает максимальную скорость оборотов, которую может достичь коленчатый вал двигателя, тем самым предотвращая повышенный износ или поломки. Особенно феерично выглядят «взрывы» дизельных двигателей – из-за тяжелых поршней происходит обрыв шатунов, и они пробивают двигатель насквозь, снося «бошку» мотора или обломками шатуна пробивая блок двигателя. Подорожником такие автомобильные травмы не лечатся:

Любой двигатель сконструирован для того, чтобы функционировать в определенном пределе, который измеряется в оборотах шатуна за 1 минуту.

Ограничитель оборотов установлен на многих автомобилях с завода, но его точно не нужно путать с красной зоной максимальных оборотов. Не всегда эти два показателя совпадают. Красная зона – это часть рабочих оборотов двигателя. Оставаться в этой зоне необходимо как можно меньшее количество времени, при этом ничего серьезного с вашим мотором не должно произойти, кроме повышенного расхода топлива и малой продуктивности, но именно ограничитель должен остановить набор скорости вращения, выходящую за пределы того, что элементы двигателя физически способны выдержать.

Дифференциальный датчик Холла

На проводящей ток пластинке, по которой вертикально проходит магнитная индукция В, поперечно к направлению тока можно снимать напряжение UH (напряжение Холла), пропорциональное направлению тока.

  • а Расположение датчика
  • b Сигнал датчика Холла
  • большая амплитуда при маленьком воздушном зазоре
  • маленькая амплитуда при большом воздушном зазоре
  • с Выходной сигнал
  1. Магнит
  2. Датчик Холла 1
  3. Датчик Холла 2
  4. Зубчатое колесо

В дифференциальном датчике Холла магнитное поле вырабатывается постоянным магнитом (поз. 1). Между магнитом и импульсным кольцом (4) находятся два сенсорных элемента Холла (2 и 3). Магнитный поток, который проходит сквозь них, зависит от того, находится ли датчик скорости вращения напротив зубца или паза. Благодаря созданию разности сигналов от обоих датчиков достигается снижение магнитных сигналов возмущения и улучшенное соотношение сигнала/ шума. Боковые поверхности сигнала датчика могут обрабатываться без оцифровывания непосредственно в блоке управления.

Вместо ферромагнитного зубчатого колеса используются также многополюсные колеса. Здесь на немагнитном металлическом носителе установлен намагничивающийся пластик, который попеременно намагничивается. Эти северные и южные полюсы принимают на себя функцию зубцов колеса.

Неустойчивые обороты холостого хода: симптомы и причины

В норме обороты ХХ на разных моторах могут колебаться в диапазоне от 700 до 900 об/мин. Нужно учитывать, что сразу после запуска холодного ДВС блок управления повышает обороты холостого хода, заставляя двигатель работать в так называемом «режиме прогрева». Данный режим штатный, то есть не является неисправностью. После достижения определенной температуры и незначительного нагрева мотора «прогревочные» обороты падают, двигатель начинает работать в обычном режиме ХХ.

Обычно неисправность проявляется несколько минут, чаще на холодном двигателе, после чего исчезает до следующего запуска. Также возможен вариант, когда поломка присутствует постоянно и независимо от степени прогрева двигателя, то есть обороты плавают постоянно после отпускания педали газа и перехода ДВС в режим работы на ХХ.

Причин для такого нестабильного холостого хода бывает много. Среди них можно выделить несколько основных. Прежде всего, необходимо учитывать тип установленного двигателя и его систему питания: карбюратор, инжектор, дизельный мотор.

На моторах с карбюратором большинство проблем решается путем чистки и настройки указанного дозирующего устройства.

Холостой ход двигателя на карбюраторе необходимо регулировать, так как настройки имеют свойство сбиваться во время активной эксплуатации ТС.
Также следует обратить внимание на то, чтобы в карбюраторе не происходило значительного обеднения топливно-воздушной смеси.
Отдельного внимания заслуживает электромагнитный клапан карбюратора. Характерным признаком его поломки является отказ двигателя работать на холостых оборотах без подсоса.
Необходимо также исключить возможность подсоса воздуха в карбюратор, что также может сильно обеднять смесь

В результате мотор троит, обороты скачут, двигатель начинает глохнуть.

Какой датчик влияет на запуск двигателя зимой?

Современные машины напичканы множеством датчиков, которые отвечают за работу того или иного прибора. Но наличие электронных или отсутствие электронных компонентов не должно влиять на запуск мотора. Автомобиль должен заводиться независимо от внешних условий. Даже если на улице мороз и машина всю ночь простояла на морозе, она все равно должна завестись. Датчики обязаны подстраиваться под внешние факторы. Итак, какой датчик влияет на запуск двигателя зимой? В этом мы попробуем разобраться и постараемся найти ответ на поставленный вопрос.

Датчики, которые расположены в моторе

У современных двигателей разное техническое оснащение. Датчиков может быть очень много, а может быть всего несколько. И если хоть один из них неисправен, то это скажется на запуске силового агрегата.

Если не вдаваться в подробности, то можно сказать, что на запуск двигателя влияет абсолютно все. Но если начать подробно разбирать, то становится понятно, что датчики установлены не просто так. Они имеют свое предназначение и служат своеобразным индикатором, который сигнализирует о том, что машина неисправна. Но далеко не все датчики влияют на запуск двигателя.

Чтобы разобраться в вопросе, какой датчик влияет на запуск двигателя зимой, нужно понимать, какие датчики устанавливают и за что они отвечают.

  • Датчик качества топлива. К большому сожалею стоит этот прибор далеко не на всех машинах. Обычно их устанавливают только на американских и немецких авто, которые не адаптированы под наше топливо.
  • Датчик температуры охлаждающей жидкости. Если этот датчик неисправен, то мотор попросту не заведется. И связано это с тем, что мотор уже нагрелся, а топливо не поступает в нужном количестве.
  • Датчик регулятора холостого хода – важный прибор, который измеряет количество поступающей жидкости в мотор. И если ее не хватает, то машина попросту глохнет.
  • ДПДЗ (Датчик положения дрюсельной заслонки) – важный индикатор, который контролирует не только дрюсель. Он следит за тем, чтобы подаваемый воздух прогревался до нужного уровня и попадал в камеру уже горячим. Если летом на улице стоит высокая температура и машина сильно нагревается, то зимой – это целая проблема. Неисправность датчика не позволит вам завести мотор.
  • Датчик массового расхода воздуха. Если этот датчик выйдет из строя, то воздух начнет поступать в мотор большими потоками. В принципе, на его работе это сильно не скажется, но двигатель начнет «задыхаться».

Дополнительные датчики также могут повлияет на запуск автомобиля. Бывалые водители, если сталкиваются с такой проблемой, начинают проверку с аккумулятора и двигаются дальше. Но если в ходе проверки неполадки были установлены именно в сердце автомобиля, то не стоит сразу же вскрывать мотор. Проверьте каждый датчик в отдельности, возможно причина кроется именно в них.

Бывают случаи, когда сбои в работе датчиков начинаются из-за загрязнения топливной системы в целом. Двигатель перестает заводиться из-за недостатка топлива в системе впрыска. Т.е. нужное количество бензина или солярки не попадает в мотор.

Некачественное топливо с некоторым количеством воды может замерзнуть на морозе и лед осядет на датчике положения дрюсельной заслонки. Итог, машина просто не заведется. Нужно будет отогревать всю топливную систему в целом.

Какой датчик влияет на запуск двигателя зимой? Специалисты в этой области дают разные ответы и порой винят не датчики, а другие приборы, например, генератор или стартер. Но и индикаторы могут стать причиной неисправности. Чтобы не остаться в мороз без машины, лучше проверьте все датчики заранее и устраните все неисправности. И тогда ваш автомобиль будет заводиться в любую погоду.

Источник

Функции датчика

Изначально этот датчик служил лишь для определения температурного режима двигателя посредством подачи на соответствующий указатель в приборном щитке. Ориентируясь по показаниям прибора, водитель мог контролировать температуру ОЖ и тем самым предотвратить перегрев двигателя – хотя бы просто заглушив его.

С появлением впрысковых двигателей функции температурного датчика расширились. В зависимости от сигнала, поступающего от него, ЭБУ подаёт команды исполнительным устройствам, в результате которых:

  • Изменяется количество впрыскиваемого форсунками топлива;
  • включается/выключается электровентилятор системы охлаждения;
  • увеличиваются обороты холостого хода в режиме прогрева двигателя.

Некоторые автомобили (например, VW Touareg) оснащаются несколькими температурными датчиками, устанавливаемыми не только в ГБЦ, но и на входных и выходных патрубках радиатора – для оптимизации работы элементов системы охлаждения.

ЭБУ, считывая показания нескольких датчиков, может инициировать:

  • Подачу предупредительных сигналов водителю;
  • отключение подачи топлива на часть цилиндров;
  • остановку двигателя.

Признаки неисправности и проверка

На инжекторных автомобилях признаками неисправного температурного датчика могут быть:

  • Повышенные обороты ХХ при прогретом моторе;
  • преждевременное включение электровентилятора;
  • увеличенный расход топлива.

На карбюраторном авто ездить с неисправным датчиком или указателем температуры крайне опасно – если вовремя заметить закипание антифриза в расширительном бачке (для чего требуется открыть капот), то можно остановить двигатель и тем самым спасти его от перегрева. Если же из выхлопной трубы уже повалил белый густой пар, то, как минимум, потребуется замена прокладки ГБЦ.

Проверяется датчик измерением его сопротивления. Для этого потребуется ёмкость с водой, омметр и термометр. Изменяя сопротивление прибора при различной температуре, можно сделать заключение о его исправности, сопоставляя показания термометра и омметра по специальным таблицам.

Ремонту неисправный датчик не подлежит – корпус прибора неразборный.

Источник

Как 100% завести автомобиль зимой

Худший сценарий действий – это исступлённо крутить стартером до тех пор, пока не сядет аккумулятор. Потом попросить «прикурить», пытаться завести «залитый» двигатель до поломки стартера. После этого начать заводить с буксира. Результатом может стать испорченный дорогой нейтрализатор, взорвавшийся глушитель, или впускной коллектор.

Поэтому ещё до наступления холодов

  • Если подходит срок, поменяем масло, фильтры и свечи;
  • Почистим клеммы аккумулятора, проверим его нагрузочной вилкой;
  • Заранее купим баллон с эфиром «быстрый старт »;
  • Выберем качественные провода для прикуривания .

Возьмём за правило вечером за 10 минут до окончания поездки отключать электрообогревы стекол, мощную аудиосистему, лишний свет. Это поможет аккумулятору запасти чуть больше электричества.

Чтобы не навредить машине при аварийном запуске, используем простые правила.

  • Не паниковать, пользоваться стартером максимум пять секунд. Повторять попытку запуска минимум через 2-3 минуты.
  • Если после двух-трёх манипуляций двигатель не завёлся, попросим опытного соседа «дать прикурить», чтобы поддержать аккумулятор. Пробуем ещё 2 раза.
  • Мотор молчит – распыляем во впускной патрубок эфир. Это нужно делать аккуратно, предварительно проконсультировавшись с мастером. Вам покажут, куда можно брызгать, чтобы не повредить датчики. Пробуем ещё две попытки.
  • Если опять постигла неудача – уходим греться и возвращаемся к машине через час, чтобы повторить процедуры. Если результат неутешительный – звоним знакомому механику или в специальную службу.

В этой статье мы умолчали о способах прокаливания свечей, поливания кипятком коллектора, замены температурных датчиков резисторами, считывания показаний через диагностический разъём – это по силам только самым опытным автолюбителям.Поэтому, чтобы 100% завести автомобиль зимой, нужно содержать его в исправном состоянии.

Современные машины рассчитаны на использование при температуре до -25 градусов и уверенно заводятся при таких морозах.

Если мороз застал вас за городом, и помощи ждать неоткуда – каждые 4 часа выходите во двор, и прогревайте машину до рабочей температуры. Или поручите эту работу сигнализации с автозапуском. При безветренной погоде сохранить тепло поможет автоодеяло . Если же ваша модель охранной системы без автозапуска, и вы уверены в безопасности, оставьте работающий двигатель на ночь. Тогда утром вы гарантировано сможете уехать своим ходом по любому морозу.

Но помните! Выхлопные газы очень токсичны, поэтому ни в коем случае не оставляйте работающий двигатель в закрытом гараже или ином помещении без вентиляции.

Источник

Конструкция и общий принцип работы автомобильного сенсора оборотов

При рассмотрении вопроса, какой датчик отвечает за обороты двигателя во всех аспектах, надо отметить, что это группа сенсоров. А именно: холостого хода (ДХХ), дроссельной заслонки (ДПДЗ), распредвала (ДПРВ), расхода воздуха (ДМРВ), рециркуляции газов. Но именно считает частоту оборотов для нормальной работы системы зажигания ДПКВ. В целом признаки поломки общие для него и перечисленных детекторов, но есть характерный только для измерителя синхронизации признак: часто именно при его поломке автомобиль вообще не заводится.

На Toyota:

Алгоритм функционирования ДПКВ в своей основе схож для всех его типов. Основывается на мониторинге изменений в создаваемой им же среде (магнитополе, индукция, оптические явления), которые провоцирует специальная ответная зубчатая часть коленвала (диск с выступами, реперный, синхронизации).

Рассмотрим этапы работы автомобильного ДЧВ в несколько обобщенном виде:

  1. Коленвал имеет специальный зубчатый (реперный) диск. На месте двух зубцов (стартового, нулевого) пустое место, без них выступов 58, они расположены по окружности через каждые 6°.
  2. Колесо крутится, выступы проходят через магнитное поле, оптические или другие импульсы, посылающиеся сенсором в зависимости от его типа, изменяют их.
  3. Прибор отслеживает указанные модификации среды, передает их на ЭБУ машины.
  4. При прохождении детектора мимо участка без двух зубцов характер импульсов фиксируется как сигнал, уведомляющий о начальном положении КВ. Таким образом сенсор различает полный оборот.
  5. Компьютер электронного управления системой автомобиля на основании показателей от ДПКВ узнает о размещении коленвала и все необходимые данные, производит вычисления, направляет сигналы в исполнительные узлы, работа системы зажигания, впрыска корректируется, мотор работает стабильно.

Наиболее ярко охарактеризовать работу датчика синхронизации можно на примере индуктивной его разновидности. При вращении сигнального колеса (во время работы ДВС) его выступы задевают магнитное поле ДПКВ. Создаются периодические импульсы напряжения, характеризующие частоту движения и положение КВ, поступающие на контроллер ЭБУ, который и рассчитывает момент для сработки модуля зажигания и форсунок.

Надо сказать, что такой алгоритм характерный в своей основе для всех типов датчиков положения коленвала: зубчики изменяют чувствительную среду, создающуюся ДПКВ, что и отслеживает через него ЭБУ.

Ниже рассмотрим виды ДПКВ и их нюансы.

Ограничители максимальной частоты вращения коленчатого вала

Работа двигателя в режиме перегрузки, т. е. при превышении расчетной мощности, негативно сказывается на долговечности его деталей и узлов, экономических и динамических показателях. Как известно, мощность двигателя прямо пропорциональна величине крутящего момента на выходном (коленчатом) валу и частоте вращения этого вала. Превышение допустимого крутящего момента на валу приведет к остановке двигателя, т. е. он попросту заглохнет. А вот чрезмерные обороты коленчатого вала при малом крутящем моменте приводят к неприятным последствиям – падает тяговая мощность из-за резкого возрастания инерционных сил в кривошипно-шатунном механизме, двигатель начинает работать неустойчиво из-за ухудшения смесеобразования, т. е., как говорят водители, — двигатель начинает работать «вразнос».

Для предупреждения перегрузки максимальная мощность двигателя грузовых автомобилей ограничивается максимальной частотой вращения коленчатого вала, который может быть пневмоцентробежного типа или с электронным управлением. Принципиальная схема пневмоцентробежного ограничителя частоты вращения коленчатого вала показана на рис. 1.

Он состоит из двух частей: центробежного датчика и пневматического мембранного исполнительного механизма. Центробежный датчик устанавливается в крышку распределительных зубчатых колес двигателя. Ротор 12 датчика приводится во вращение от торца распределительного вала. Датчик соединяется двумя трубками с карбюратором и корпусом исполнительного механизма. Назначение датчика – управление величиной разрежения над мембраной 7 исполнительного механизма. Исполнительный механизм в зависимости от разрежения управляет дроссельными заслонками.

Работает ограничитель следующим образом. На малых частотах вращения клапан 22 под действием пружины 14 отводится к центру ротора, отверстие 23 в седле клапана открыто. Сопротивление движению воздуха, создаваемое датчиком, в этом случае меньше сопротивления жиклеров 2, вследствие чего разрежение над мембраной 7 недостаточно, чтобы создать на рычаге 4 силу большую, чем сила пружины 3, которая удерживает дроссельные заслонки в открытом положении.

По мере повышения частоты вращения коленчатого вала центробежная сила клапана увеличивается, и он, растягивая пружину 14, приближается к своему седлу, при этом сопротивление движения воздуха через датчик соответственно повышается. При максимальной частоте вращения это сопротивление увеличивается настолько, что становится больше сопротивления жиклеров 2, и в полости А над мембраной 7 создается разрежение, достаточное для срабатывания ограничителя. Мембрана 7 перемещается вверх и через шток 5 и рычаг 4 закрывает дроссельные заслонки 27, в связи с чем мощность двигателя уменьшается и частота вращения снижается.

При снижении частоты вращения уменьшается действующая на клапан центробежная сила, и он под действием своей пружины приоткрывается, что приводит к снижению сопротивления датчика. В результате разрежение в полости А над мембраной уменьшается и пружина 3 открывает дроссельные заслонки. Частота вращения вновь поднимается до максимальной, после чего цикл работы ограничителя вновь повторяется.

Центробежный датчик ограничителя настраивается заводом-изготовителем, для чего используется регулировочный винт 15, с помощью которого изменяется натяжение пружины клапана.

В конструкциях современных автомобилей с карбюраторными двигателями все большее применение находят электронные системы ограничения максимальной частоты вращения коленчатого вала, встроенные в карбюратор.

Источник

Испытание на работоспособность

Самый эффективный способ проверки – это диагностика с помощью диагностического оборудования, в простонародье – «автосканер». Это наиболее точный способ для выявления любых неисправностей автомобиля, и здесь есть 2 варианта – ехать на сервис либо приобрести сканер для личных нужд. На данный момент второй вариант будет наиболее предпочтительным, т.к. за короткий промежуток времени сэкономит вам много денег. На рынке очень большое количество диагностических приборов на любой вкус и цвет.

Если ваш бюджет ограничен либо вы просто не хотите тратить больших сумм на приобретение устройства, то можем порекомендовать вам адаптер Корейского производителя Scan Tool Pro Black Edition.

Если подобных устройств у вас нет, а ближайший сервис очень далеко, то есть и другой способ проверки, в домашних условиях.

Чтобы проверить термический датчик, его придется снять с автомобиля. Для этого выполните такие действия:

  1. Дайте двигателю остыть до 40—50 °С, чтобы при работе не обжечь руки. Частично или полностью слейте антифриз из системы охлаждения.
  2. Отключите аккумуляторную батарею от бортовой электросети, сняв «минусовый» провод.
  3. Отсоедините от термоэлемента колодку с проводами.
  4. Выкрутите деталь, пользуясь ключом подходящего размера.

Если прибор установлен в верхней точке системы, то опорожнять ее целиком необязательно, достаточно спустить в емкость третью часть жидкости. Сливать весь антифриз нужно в том случае, когда термоэлемент стоит в нижней части радиатора.

Для проведения испытаний вам понадобится:

  • мультиметр или другой прибор, способный мерить сопротивление цепи;
  • небольшая емкость для воды (можно обычный стакан);
  • термометр со шкалой до 100 °С.

Если мультиметр показал определенное сопротивление, то погрузите термоэлемент в стакан с холодной водой и зафиксируйте показания. Затем доливайте горячую воду и следите за изменением сопротивления, оно должно уменьшаться. При отсутствии каких-либо изменений покупайте и устанавливайте новый температурный датчик.

Если испытания прошли успешно и приборчик меняет сопротивление при нагреве воды, то стоит проверить соединительные провода и почистить контакты. Подобные мелочи часто бывают причиной крупных неисправностей.

Источник

Способы проверки датчика коленвала

Всего существует много способов, но мы рассмотрим три самых распространённых. В любом случае, надо отметить положение датчика, чтобы потом его установить в точности так, как он стоял. Для начала, нужен только мультиметр, которым надо замерить сопротивление катушки датчика. Оно должно лежать в пределах 500-750 Ом. Если сопротивление больше или меньше, то датчик скорее всего замкнут накоротко, либо в обрыве, его нужно заменить.

Второй способ, само собой, сложнее. Для его реализации потребуется трансформатор, осциллограф и мегаомметр. Для начала, измеряем сопротивление изоляции, которое при 500 вольтах должно быть не менее 20 МОм.

Самый трудоемкий и недоступный для рядового автовладельца способ следующий. Он заключается в подключении датчика на автомобиле к цифровому осциллографу, то есть, к компьютеру. В основном, это делается на станциях технического обслуживания, поэтому описывать подробно его не будем. На фото хорошо видно осциллограмму исправного датчика коленвала. Виден момент пропуска, то есть, когда пропуск на диске синхронизации проходит рядом с сердечником датчика.

Дополнительные датчики

ДАД

Датчик абсолютного давления находится во впускном коллекторе или закрепляется на автомобильном кузове, соединяясь с впускным коллектором гибкой трубочкой. Задача ДАД  – измерение давления во впускном коллекторе. На основе этих данных ЭБУ рассчитывает расход воздуха двигателем, образуя идеальные параметры топливно-воздушной смеси. Фактически, он заменяет ДМРВ, но иногда работает с ним в паре, сообщая дополнительную информацию.

ДНД

Датчик неровной дороги прикрепляется к кузову возле крепления одного из амортизаторов. Он улавливает колебания в вертикальной плоскости при движении автомобиля, определяя, что он двигается по неровной дороге. Данный от датчика поступают в блок управления и он  отключает функцию диагностики пропусков зажигания, которая работает при неравномерном вращении коленвала.

Если какой-либо из датчиков неисправен, ЭБУ дает команду перехода в аварийный режим работы. При этом недостающая информацию заменяется усредненными данными, вшитыми в его память. Это не касается ДПКВ, при котором двигатель не работает. О том, что какой-то датчик вышел из строя предупреждает лампочка, загорающаяся на приборной панели с надписью CHECK или CHECK ENGINE. Чтобы понять, что именно происходит с автомобилем, требуется провести компьютерную диагностику ЭБУ.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
FAQ по авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector