Какой датчик отвечает за обороты двигателя?

Разновидности автомобильных датчиков оборотов двигателя

Есть несколько типов автомобильных измерителей вращений двигателя по принципу создания и регистрации изменений в чувствительной среде.

Индукционные (индуктивные)

Индуктивные датчики синхронизации оборотов двигателя самые простые, распространенные, дешевые, но это не уменьшает их эффективность.

Основной элемент индукционных детекторов числа вращений ДВС — катушка, намагничивающая сердечник и создающая магнитные потоки.

В следующем объяснении цифровые ссылки на рисунок ниже. Индуктивный датчик синхронизации устанавливается сразу напротив зубчатой ферромагнитной части КВ (7). На ней также есть небольшой воздушный зазор (место, где отсутствуют выступы). Датчик внутри состоит из стального намагниченного сердечника (полюсный контактный стержень, 4), с обмоткой тонкой медной, изолированной эмалью, проволокой (5), наподобие как у трансформаторов. Данный элемент связан с постоянным магнитом (1).

Алгоритм работы:

  1. Полюсный контактный штырь распространяет магнитополе, которое проходит на зубчатый вал.
  2. Зубцы задевают магнитопоток, идущий через катушку, его свойства на выступах и впадинах меняются. На первых этот рассеиваемый поток становится более концентрируемым (пучок). На вторых, наоборот, осуществляется ослабление указанного явления.
  3. Вышеуказанные трансформации индуцируют на витках обмотки выходное переменное напряжение с определенной синусоидой. Величина пропорциональная скорости и количеству оборотов (рис. 2). Амплитуда быстро растет с их повышением (от нескольких мВ до 100 В и больше). Достаточное значение образовывается, начиная с минимального числа вращений от 30/мин.

Оптические

Конструкция состоит из ИК-светодиода с установленным напротив него приемником. Между элементами — зубцы коленвала. Линия излучения пересекается этими выступами, что фиксирует приемник и отправляет соответствующий импульс на ЭБУ. Применяются реже.

Активные

Далее рассмотрим так называемые «активные» датчики вращений мотора, работающие по магнитостатическому методу. При них на амплитуду выходного импульса не влияет число оборотов, поэтому становятся доступными измерения интенсивности поворотов КВ при чрезвычайно низком количестве таковых (квазистатический мониторинг). Такие изделия намного более продвинутые, с расширенными возможностями.

Датчики числа вращений двигателей с дифференциальными детекторами Холла

На токопроводящей пластине, пропускающей в вертикальном направлении магнитную индукцию, поперечно к течению тока можно фиксировать пропорциональное его направлению, так называемое напряжение Холла.

Рисунок со схемой данного варианта выше. В таком дифдатчике ДПКВ поле создается постоянным магнитом (1). Два сенсора Холла (2 и 3) размещены между магнитом и кольцом, продуцирующим импульсы (4). В магнитопотоке происходят изменения в зависимости от того, что оказывается на нем — впадина или зубец. Разностью сигналов двух сенсоров снижается возмущение, уровень отклонений, улучшается соотношение сигнала и шума. Боковые участки сигнала могут анализироваться без оцифровки прямо на блоке управления.

Зубчатые колеса синхронизации могут быть не только ферромагнитными, но и многополюсными, где немагнитный носитель из металла снабжен кусочком специального пластика, который попеременно намагничивается. Северные и южные полюсы такого элемента выполняют роль делений.

AMR

Чувствительная часть AMR сенсоров синхронизации оборотов автомобиля сделана из магниторезистивного состава.

АМР — анизотропный магниторезистивный. Первый термин означает, что электросопротивление этого материала зависит от направленности воздействующего магнитополя. Такой сенсор установлен между магнитом и импульсным диском (аналог зубчатого, как при индуктивных сенсорах).

При вращении импульсного активного диска линии поля изменяют свои параметры, что формирует синусоидальное напряжение, усиливаемое схемой обработки данных, преобразовываемое ею в импульс прямоугольной геометрии.

GMR

В данном случае применяется инновационная технология Giant Magneto-Resistance. Такой сенсор намного чувствительнее, чем AMR — тут возможны значительные воздушные промежутки.

GMR-датчики оборотов двигателя применяются для сложных условий, высокая сенситивность создает меньше шумов, погрешностей сигнала.

Продвинутые ГМР детекторы оснащают двухпроводными портами, они же иногда встречаются в сенсорах вращения Холла.

Все основные датчики в двигателе автомобиля, и за что они отвечают (список)

С появлением инжекторной системы подачи топлива количество датчиков в конструкции автомобиля значительно увеличилось. Электронный блок управления двигателем получает и обрабатывает большое количество информации, что необходимо для правильной работы всех систем. Но далеко не все водители знают о том, какие датчики имеются в конструкции автомобиля, и для чего они предназначены. Я решил рассказать о всех основных элементах, что позволит автолюбителям самостоятельно диагностировать неисправность.

Перейдем к списку датчиков:

Датчик массового расхода воздуха (ДМРВ) — располагается за воздушным фильтром и определяет количество проходящего воздуха. Необходим для формирования оптимальной топливно-воздушной смеси. Данные с ДМРВ передаются в ЭБУ, который корректирует подачу топлива в соответствии с ними.

Датчик положения дроссельной заслонки (ДПДЗ) — считывает информацию о том, в каком положении находится дроссельная заслонка. Положение заслонки зависит от уровня нажатия на педаль газа. Данные с датчика позволяет корректировать объем подачи топлива.

Датчик положения коленчатого вала (ДПКВ) — считывает положение и обороты коленвала двигателя. Пожалуй, этот датчик можно назвать единственным, выход из строя которого приведет к полной невозможности запуска двигателя . Показания с ДПКВ позволяют ЭБУ определять момент для впрыска топлива и угол опережения зажигания. Также информация с датчика отображается на тахометре.

Датчик положения распределительного вала (ДПРВ) — находится в районе распредвала и позволяет определить положение цилиндров в верхней точке. Данные с ДПРВ позволяют определить, в какой цилиндр нужно подать топливо и включить зажигание.

Датчик детонации — датчик, определяющий детонацию в камере сгорания. Детонация влечет за собой серьезную нагрузку на двигатель и способна разрушать его изнутри. Датчик улавливает чрезмерные колебания, при возникновении которых корректируются топливная смесь и угол опережения зажигания.

Датчик температуры охлаждающей жидкости (ДТОЖ) — определяет температуру ОЖ в системе. Данные с ДТОЖ позволяют быстрее прогревать холодный двигатель за счет увеличенных оборотов холостого хода, а при достижении установленной температуры ЭБУ включает принудительное охлаждение вентилятором во избежание перегрева.

Датчик кислорода — располагается в выпускной системе. На современных автомобилях имеются два или более датчиков. Их применение связано с экологическими стандартами. Первый датчик кислорода находится перед катализатором, второй за ним. В зависимости от показаний позволяет корректировать топливную смесь и определять неисправность катализатора.

Датчик скорости — обычно располагается рядом с КПП или колесом. Определяет количество вращений вала, за счет чего ЭБУ отображает текущую скорость на приборной панели. Сейчас его функцию могут заменять другие датчики, например, датчик АБС.

Датчик давления масла — расположен в масляной системе и определяет давление. Никакие параметры на его основе не корректируются, но при возникновении слишком низкого давления на приборной панели загорится лампочка «маслёнки».

Датчик абсолютного давления (ДАД) — считывает показатели давления во впускном коллекторе, за счет чего корректируется состав топливно-воздушной смеси.

Датчик положения кузова (датчик неровной дороги) — располагается на кузове автомобиля и позволяет определить движение по неровной дороге. Так как подобный режим движения может повлечь за собой пропуски зажигания на приборной панели должна загореться характерная ошибка. Но ЭБУ понимает, что автомобиль едет по неровностям, поэтому не отображает ошибку.

Источник

Запуск мотора и неисправность датчиков

Существует несколько вариантов запуска силового агрегата и влияния датчиков на работоспособность сердца машины. Рассмотрим, варианты неправильного запуска силового агрегата, влияние датчиков и методы устранения:

  1. Двигатель заводится, но возникает эффект троения. В этом случае, со строя могли выйти датчики: положения дроссельной заслонки, РХХ, ДМВР, фаз и, конечно же, ЭБУ.
  2. Двигатель не запускается. Это может быть связано с выходом любого датчика со строя. Так, для устранения неисправности необходимо поэтапно прозвонить все индикаторы при помощи мультиметра, или подключиться к блоку управления, который укажет код ошибки и связанный с ним датчик.
  3. Блокировка запуска двигателя электронным блоком управления, в связи с выходом со строя нескольких датчиков или накоплением ошибок. Для устранения неисправности нужно подключиться к мозгам автомобиля при помощи OBD-кабеля, и специальным оборудованием провести диагностику, которая покажет ошибки. Расшифровав коды можно определить, какие индикаторы необходимо прозвонить, чтобы устранить проблему.
  4. Двигатель запускается, но работает с перебоями, периодически глохнет. В этом случае, проблема может скрываться в датчиках положения дроссельной заслонки, массового расхода воздуха, датчике кислорода, положения коленчатого вала и регулятора холостого хода. Для быстрой и эффективной диагностики рекомендуется подключиться к блоку управления мотором и определить, какой именно индикатор вышел со строя.

В случае появления неисправностей двигатель дело может и даже не в датчиках, но зачастую именно они становятся причиной бед. Поэтому, прежде чем лезть в механическую часть мотора, необходимо определить, а не кроется проблема ли в индикаторах.

Что отслеживает датчик вращений и положения коленвала

Детектор оборотов двигателя передает на ЭБУ следующее:

  • объем впрыскиваемого топлива в конкретный момент;
  • кода появляется сам момент впрыска;
  • оптимальное время для активации клапана адсорбера, длительность его работы;
  • момент и угол опережения зажигания, угол поворота КВ.

ДПКВ — это единственный датчик, выход из строя которого, среди прочих схожих для неполадок сенсоров последствий, приведет к полной остановки двигателя. Именно он позволяет системе определить, когда на свечах зажигания создавать искровой заряд.

Где находится датчик оборотов

Детектор оборотов, он же индукционный измеритель расположен, как правило, над маркерным (реперным) колесом, зубчики которого выполняют для него роль сигнализатора. Установлен в таких местах:

  • маховик;
  • коленвал, внутри сегмента цилиндров (часто так у Ford, Opel);
  • с фронта моторной части на КВ, со шкивом привода дополнительных узлов (Jaguar, BMW, ВАЗ и так далее).

Маркерные выступы реперного колеса могут предназначаться только для измерения оборотов ДВС (лучший вариант), а также их роль могут выполнять выступы на стартерном узле (Audi, Volvo). У некоторых моделей измеритель оборотов заменяет сенсор Холла, тогда обычно устройство находится вблизи распредвала.

Место сенсора синхронизации неудобное, поэтому он имеет длинный (до 70 см) кабель с разъемом, само устройство крепится на кронштейне. Стандартное его место — около шкива привода генератора.

Сложности с идентификацией

Приведем пример, как владельцем Audi 100 2.6 описана вариация разных сенсоров. Измеритель оборотов тут обозначен как G28, но также есть отдельный детектор для КВ (G4):

Ниже на рисунке упоминаемый отдельный датчик G4, а соотношение по месту его расположения к G28 показано на фото выше:

Учитывая сказанное, для начала желательно ознакомиться со схемой силовой системы по спецификации конкретной модели машины.

Конструкция и общий принцип работы автомобильного сенсора оборотов

При рассмотрении вопроса, какой датчик отвечает за обороты двигателя во всех аспектах, надо отметить, что это группа сенсоров. А именно: холостого хода (ДХХ), дроссельной заслонки (ДПДЗ), распредвала (ДПРВ), расхода воздуха (ДМРВ), рециркуляции газов. Но именно считает частоту оборотов для нормальной работы системы зажигания ДПКВ. В целом признаки поломки общие для него и перечисленных детекторов, но есть характерный только для измерителя синхронизации признак: часто именно при его поломке автомобиль вообще не заводится.

На Toyota:

Алгоритм функционирования ДПКВ в своей основе схож для всех его типов. Основывается на мониторинге изменений в создаваемой им же среде (магнитополе, индукция, оптические явления), которые провоцирует специальная ответная зубчатая часть коленвала (диск с выступами, реперный, синхронизации).

Рассмотрим этапы работы автомобильного ДЧВ в несколько обобщенном виде:

  1. Коленвал имеет специальный зубчатый (реперный) диск. На месте двух зубцов (стартового, нулевого) пустое место, без них выступов 58, они расположены по окружности через каждые 6°.
  2. Колесо крутится, выступы проходят через магнитное поле, оптические или другие импульсы, посылающиеся сенсором в зависимости от его типа, изменяют их.
  3. Прибор отслеживает указанные модификации среды, передает их на ЭБУ машины.
  4. При прохождении детектора мимо участка без двух зубцов характер импульсов фиксируется как сигнал, уведомляющий о начальном положении КВ. Таким образом сенсор различает полный оборот.
  5. Компьютер электронного управления системой автомобиля на основании показателей от ДПКВ узнает о размещении коленвала и все необходимые данные, производит вычисления, направляет сигналы в исполнительные узлы, работа системы зажигания, впрыска корректируется, мотор работает стабильно.

Наиболее ярко охарактеризовать работу датчика синхронизации можно на примере индуктивной его разновидности. При вращении сигнального колеса (во время работы ДВС) его выступы задевают магнитное поле ДПКВ. Создаются периодические импульсы напряжения, характеризующие частоту движения и положение КВ, поступающие на контроллер ЭБУ, который и рассчитывает момент для сработки модуля зажигания и форсунок.

Надо сказать, что такой алгоритм характерный в своей основе для всех типов датчиков положения коленвала: зубчики изменяют чувствительную среду, создающуюся ДПКВ, что и отслеживает через него ЭБУ.

Ниже рассмотрим виды ДПКВ и их нюансы.

MAF-sensor на дизеле, признаки неисправности

ДМВР на дизельные двигателя начал устанавливаться недавно. Связано это с усовершенствованием последних и внедрением в их работу более сложных, но эффективных систем мониторинга.

Воздухомер выполняется несколько важных функций:

  1. Ограничивает дымления на турбированные моторах.
  2. Мониторит не только количество воздуха во впускном патрубке, но и объем картерных газов.

В первом случае при резкой выжатой педали газа формируется определенный объем дизтоплива, для которого должен сформироваться соответствующий объем воздуха.

Но так как турбина раскручивается с опозданием (образуется турбояма), нужное количество воздуха сформироваться не успевает. Происходит переобогащению смеси, не полное сгорание топлива, выброс сажи в выхлопную систему и наблюдается кратковременный дым из выхлопной трубы. Частично решает проблему DPF фильтр, но, если он есть.

Чтобы решить данную проблему и ограничить переизбыток топлива при резком ускорении, в работу включается ДМРВ. Он передает на контролер информацию о реальном количестве воздуха, нагнетаемого турбиной.

Электронный блок управления, получив эти данные, ограничивает циклическую подучу топлива, подгоняя его количество под объем воздуха.

Такое решение позволило уменьшить расход ДТ при сохранении мощностных характеристик двигателя, но при условии, что MAF-sensor работает корректно.

Во-втором случае, ДМРВ на дизельном моторе работает совместно с системой вентиляции картерных газов. Он мониторит, сколько отработанных газов проникает в систему впуска через клапан EGR при его открытии и передает эти данные на ЭБУ. Последний, на основе полученной информации, управляет открытием и закрытием клапана EGR.

Такое решение уменьшает и расход топлива, и количество вредных выбросов в атмосферу.

Исходя и этого, основными признаками поломки расходомера на дизельном двигателе могут быть:

  1. Кратковременное появление дыма (сажи) из выхлопной трубы при ускорении.
  2. Нестабильная работа мотора на переходных режимах, снижение мощности.
  3. Повышенный расход ДТ.

Диагностика ДМРВ на дизельном двигателе не чем не отличается от методов, описанных выше.

Также полезно знать – Видеорегистратор зеркалоТОП 10 популярных моделей 2020/2021, которые не разочаруют владельца.

К чему приводит неисправность?

Нельзя сказать, что поломка расходометра сразу приведет к критическим последствиям, но если игнорировать проблему, то продолжительная работа мотора на неправильно сформированной топливовоздушной смеси приведет к быстрому износу элементов цилиндропоршневой группы, а при наложении нескольких фактором может произойти детонация в двигателе и даже его «клин».

К примеру, если в мотор поступает богатая смесь, то в результате разжижения масла быстро перегреется двигатель.

Также неисправный MAF-sensor в значительной мере, по причине ухудшения чистоты выхлопа, влияет на уменьшение ресурса каталитического нейтрализатора, сажевого фильтра и выхлопной системы в целом.

Какие датчики могут располагаться в двигателе

Разные моторы могут иметь различное количество датчиков, исправность которых может по-разному влиять на запуск и работу силового агрегата. Если смотреть обобщенно, то любой индикатор, может повлиять на хороший пуск движка. Но, если разбирать по частям, то каждый датчик имеет свое предназначение, а поэтому не все могут повлиять на запуск сердца автомобиля. Рассмотрим, каждый датчик по отдельности и его предназначение в работе автомобиля.

Итак, начнем с самого начала. Автолюбитель залил горючее в автомобиль. На многих современных автомобилях устанавливают датчик качества топлива. Особенно такие датчики можно встретить на немецких и американских автомобилях, которые не адаптированные для нашего региона.

При поступлении плохого горючего в топливную систему, анализатор определяет, насколько качественное топливо попало в машину. Если была залита «бодяга», то мотор может начать заводится с трудом или вовсе не заведется. Располагается такое анализатор может перед или после топливного фильтра.

Второй индикатор по значению, который может повлиять на запуск мотора — датчик температуры охлаждающей жидкости. Именно неисправность этого индикатора может привести к тому, что силовой агрегат будет долго заводиться. Это связано с тем, что электронный блок управления думает, что мотор нагретый, и впрыскивает недостаточное количество топлива. Обычно, этот датчик больше всех подвержен поломкам.

Следующий индикатор, который непосредственно влияет на нормальный запуск движка — датчик регулятора холостого хода. Он определяет, какое количество топливно-воздушной смеси необходимо для нормальной работы мотора на холостом ходу и во время пуска мотора.

Датчик детонации также влияет на пуск агрегата. Обычно, он установлен в верхней части двигателя и улавливает вибрации издаваемые двигателем. В случае, если датчик подает в ЭБУ сигнал о том, что детонационные действия могут навредить мотору, блок управления блокирует подачу воздушно-топливной смеси и искру. При этом мотор может первый раз провернуть несколько раз коленчатый, а потом заглохнуть и вовсе больше не завестись.

Датчик положения дроссельной заслонки (ДПДЗ). Этот индикатор контролирует положение дросселя, а также процесс регулировки его для нагнетания воздуха в камеры сгорания. ДПДЗ неразрывно связан с датчиком массового расхода воздуха.

Датчик положения коленчатого вала. Он вычисляет положение коленвала относительно положения цилиндров. При выходе со строя, блок управления получает стабильные данные и останавливает работу мотора принудительно.

Датчик кислорода влияет непосредственно на образование воздушно-топливной смеси, а также на расход горючего. Он измеряет концентрацию кислорода в выпускных газах, чем контролирует непосредственно подачу топлива в камеры сгорания. Разность показаний индикатора изменяется приблизительно от 0,1 В (высокое содержание кислорода — бедная смесь) до 0,9 В (мало кислорода — богатая смесь).

А задней части головки блока цилиндров расположен датчик фаз. Он определяет положение 1-го поршня в верхней мертвой точке. Разработан и основан на действие датчика Холла. Этот датчик регулирует фазы газораспределения, а именно открывание и закрывание выпускных клапанов.

Еще одним представителем воздушных индикаторов является датчик массового расхода воздуха (ДМВР). Расположен он перед дроссельной заслонкой и при помощи него контролируется количество воздуха, который поступает в камеру сгорания.

Этот индикатор анализирует положение дроссельной заслонки для подачи и регулировки количества воздуха подаваемого в цилиндры. Обычно, при выходе датчика со строя, количество нагнетаемого воздуха для разных режимов работы двигателя не меняется, и силовой агрегат попросту задыхается при добавлении количества топлива и оборотов.

Дополнительными датчиками могут считаться — датчик температуры охлаждающей жидкости расположенный на радиаторе и датчик диагностики электроники. Эти индикаторы устанавливаются на автомобилях с так называемой «тяжелой электроникой», где все процессы управления мотором проводятся бортовым компьютером.

Неотъемлемой частью датчик управления запуском двигателя является блок управления силовым агрегатом. Именно он контролирует все процессы, происходящие в движке, а также регулирует настройки для оптимального пуска. Выход со строя этого элемента повлечет за собой то, что мотор попросту не заведется.

Что влияет на запуск бензинового двигателя

Принцип работы мотора не изменился со времён постройки первого автомобиля. По-прежнему нужно, чтобы было что поджечь, и чем поджечь рабочую смесь в цилиндрах. Изменились лишь способы обеспечения этого процесса.

Перечислим основные факторы, влияющие на уверенный пуск мотора зимой.

  • Качественное топливо. Октановое число бензина должно соответствовать конструкции двигателя, а испаряемость (точнее – давление насыщенных паров) – сезону. Дизельное топливо также должно быть зимнее.
  • Маркировка по инструкции к автомобилю. Излишне густое затрудняет вращение коленчатого вала стартером, к тому же плохо прокачивается насосом, ускоряя износ мотора.
  • Состояние топливной системы. должны вовремя меняться. Если вы заливали некачественный бензин, то на форсунках (или карбюраторе) появляются лаковые отложения, которые мешают правильному образованию топливно-воздушной смеси. Вместо распыления в форме факела инжектор начинает лить топливо струёй, и оно не успевает испариться. Износ или нарушение регулировки ТНВД дизеля также затруднит запуск.
  • Исправность системы управления двигателем. Неисправный или , кое-как справлявшиеся летом, зимой будут препятствовать запуску двигателя. «Ёжик» из опилок на датчике положения коленвала тоже не способствует уверенному старту в мороз.
  • Электрическая часть. Окислившиеся клеммы на аккумуляторе, старая батарея и треснувшие провода затрудняют вращение стартера. Однажды скорости может оказаться недостаточно для того, чтобы завести двигатель зимой.
  • Система зажигания. должны соответствовать модели двигателя (маркировку и зазор между электродами можно посмотреть в инструкции). и не должны иметь трещин и царапин на поверхности. В дизельном моторе должны исправно работать все свечи накаливания.

Обычно затрудненный запуск свидетельствует о небрежном отношении к технике в целом.

Как видите, заочно сложно выделить единственную причину, по которой машина не заводится на морозе. Но что же делать, если машина не заводится, а ехать нужно? Оптимальный вариант — воспользоваться услугами такси.

Виды и принцип работы расходометров

Датчик массового расхода воздуха относится к термоанемометрическим устройствам.

Основные виды, которые применяются на автомобилях:

  1. Пленочные с аналоговым и цифровым сигналом.
  2. Проволочные (нитевые) аналоговые.
  3. Частотный ДМРВ. Уже ставиться на большинство современных авто, сошедших с конвейера.

Расходомеры с трубкой Пито (лопаточного типа) не рассматриваются из-за устаревшей конструкции.

Принцип работы первых двух типов устройств схож между собой и основан на изменении показаний напряжения, подаваемого на нагревательные элементы (нити или пленку). Эти изменения отслеживает ЭБУ и выполняет расчеты для формирования топливно-воздушной смеси. Дальше подробней.

Проволочные ДМРВ

Применяются на большинстве современных автомобилях. В таких устройствах ключевую роль играют терморезисторы – две вольфрамовое или платиновые нити диаметром 0.07 мм, на которые подается напряжение с определенной силой тока в результате они нагреваются, а также термистор (датчик температуры), но он предусмотрен не везде.

Одна нить закрыта от потока воздуха, а вторая, при отрытой дроссельной заслонке, наоборот, обувается и активно охлаждается.

Чтобы выровнять показания температур терморезисторов на открытую нить подается больший ток.

ЭБУ учитывает разницу показаний напряжения между нитями, интенсивность их охлаждения и по ним рассчитывает объем приходящего воздуха и уже в соответствии с этим рассчитывает нужное количество подаваемого в цилиндры топлива.

У проволочных ДМРВ есть несколько существенных недостатков: со временем они загрязняются или изнашиваются.

Для решения первой проблемы конструкторы разработали режим самоочистки. Он предусматривает кратковременный (чтобы не разрядить АКБ) разогрев нити до 1000-11000С на заглушенном моторе. При такой температуре все отложения сгорают.

При износе терморезисторов датчик меняют.

Пленочные расходометры

Конструктивно такие датчики отличаются от первых, хотя принцип их работы во многом одинаков.

Вместо чувствительного нитевого терморезистора здесь установлен керамический нагревательный элемент с платиновым напылением или полупроводниковая пленка.

Место расположения пленочного устройства остается прежним, а сам керамический элемент имеет несколько слоев-резисторов каждый и которых выполняет свою функцию: датчик температуры, нагревательный, два терморезистора.

Важное преимущество такого датчика в том, что он замеряет температуру не только входящего, но и отражающего воздуха. Также устройство меньше подвержено загрязнению

Стоит отметить, что в современных устройствах выходное сигнальное U передается не только в аналоговом режиме, но и в цифровом, это ускоряет обработку данных.

Частотный ДМРВ

Изделие компании General Motors устанавливалось на первых ВАЗ 2109 и работало в паре с ЭБУ Январь 4. Характеризуется надёжностью и долгим сроком службы.

Принцип работы основан не на изменении постоянного напряжения, а на изменении частоты выходного сигнала переменного U. Когда частота большая – это указывает на большой расход воздуха, низкая частота – малый расход воздуха.

Основное преимущество частотного расходометра – стабильная передача данных на ЭБУ при падении напряжения в цепи (плохой контакт, окисление и т.д.).

Представим, что в разъемах окислились контакты. Тогда выходной сигнал 1.02V уменьшится и к контролеру придет, к примеру, 0.9V. Это не критично, но на расход топлива в сторону увеличения повлияет.

В частотном датчике скачки напряжения никак не влияют на работу ЭБУ. Окисление контактов никак не изменит частоту сигнала, а значит 100% выходных данных дойдет до адресата, т.е. контролера (ЭБУ).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
FAQ по авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector